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Abstract

It is well known that antipodal graspscan be achieved
on curved objectsin the presenceof friction. This paper
presentsan efficient algorithmthat finds, up to numerical
resolutionall pairsof antipodalpointsonaclosedsimple,
andtwice continuouslydifferentiableplanecurve. Dissect-
ing the curve into seggmentseverywherecorvex or every-
whereconcae, thealgorithmmarchesimultaneouslyna
pair of suchsegmentswith provablecornvergenceandinter-

leavesmarchingwith numericalbisection.It makesuseof

new insightsinto thedifferentialgeometryattwo antipodal
points. We have avoidedresortingto traditionalnonlinear
programmingvhich would neitherbe quite asefficient nor
guarantedo find all antipodalpoints. Dissectionandthe
couplingof marchingwith bisectionintroducedin this pa-
per are potentially applicableto mary optimizationprob-
lemsinvolving curvesandcurvedshapes.

1 Introduction

A graspon an objectis force closure if andonly if arbi-
trary force andtorquecanbe exertedon the objectthrough
the finger contacts. Two fingersin frictional contactwith
a 2D curved shapecanform a force-closuregraspif they
areplacedat two pointswhoseinward normalsare oppo-
siteandcollinear Sucha graspis referredto asanantipo-
dal graspwhile thetwo pointsarereferredto asantipodal
points For example,theclosedcurvein Figurel haseight
pairsof antipodalpoints (humberedhe samewithin each
pair).

We presentfastalgorithmthatfindsall antipodaboints
on ageneralkclosedplanecurve. The novelty of this algo-
rithm lies in (a) its dissectionof the curve into sggments
turningin onedirection,and(b) its combinationof numer
ical bisectionandmarchingwith provablecorvergence.

*Supportfor this researctwasprovided by lowa StateUniversity

Figure 1: Eight pairsof antipodalpointson a curved shape.The
graspatpair 7 (or atary otherpair)is force-closure.

1.1 Related Work

Hongetal. [5] provedtheexistenceof two pairsof antipo-
dal pointson a closed simple,andsmoothcorvex curve or
surface. ChenandBurdick [3] computedantipodalpoints
on 2D and 3D shapeghroughminimizing a graspingen-
ergy function. Blake andTaylor [2] gave ageometricclas-
sificationof two-fingeredfrictional graspsof smoothcon-
tours. Ponceet al. [11] employed parallel cell decompo-
sition to computepairs of maximal-lengthsegmentson a
piecavise-smoothcurved 2D object that guarantedorce
closurewith friction.

Nguyen[9] describedsimple algorithmsfor synthesiz-
ing independengraspregionson polygonsandpolyhedra,
with or without friction. Markenscof etal. [8] determined
the numberof fingersto immobilize 2-D and 3-D objects
with piecavise smoothboundaries. We refer the reader
to[1] for asuney of researclon graspingandcontact.

In preprocessingur algorithm finds points of simple
inflection. In [4] Goodmangave an upperboundon the
numberof inflection points on parametricspline curves.
Manochaand Canry [7] usedthe Sturmsequencenethod
to find inflection pointson rationalcurves. Sakai[12] ob-
tainedthe distribution of inflection pointsand cuspson a
parametriaationalcubiccurve.



1.2 Antipodal Points

Let a(u) bea closed,simple,andtwice continuouslydif-
ferentiablecurve,whereu increasesounterclockwisefor
clarity of presentationwe assumehatc is unit-speedthat
is, [|@’(u)|| = 1. All proceduresn this paperarepresented
on unit-speecturvesbut canbe extendedwith virtually no
effort to (and have beenimplementedon) arbitrary-speed
curves.

Denoteby T'(u) = a'(u) the tangentof o anddenote
by N(u) the inward normal. We only considerthat a’'s
cunaturek is not constant. Furthermorex canbe zero
atonly isolatedpointson the curve. In caseno ambiguity
arisesthe parameter alsorefersto the pointa(u) onthe
curve. Two pointsa andb on a: arecalledantipodalif their
normalsareoppositeandcollinear:

N(a)+N(b)=0 and N(a) x (a(b) - a(a)) =0.

In Section2 we will considerhow to find antipodal
points on a pair of sggmentsof « that satisfy somere-
strictedconditions. In Section3 we will describehow to
preprocessx to generateall such pairs. Section4 will
presensomeexperimentakesults.

2 Computation of Antipodal Points

Two sggmentsof «, denotedas S and 7, are defined
on subdomains(s,, sp) and (t,,ts), respectrely. Here
sq < sp alwaysholds. For corveniencewe allow ¢, > t,
in which case(t,,t,) refersto the interval (¢5,t,). Let
®(a,b) = fab x du bethetotal curvatue over (a, b), which
measureghe amountof rotation of the tangentT" asiit
movesfrom a to b alongthe curve. We assumethat the
following conditionsaresatisfied:

(i) NointersectiorbetweenS and7.

(i) & > 0 everywhereor k < 0 everywhereonbothS and
T, with k = 0 possibleonly ats,, sp, t,, andt;.

(iii) N(sq) + N(t,) = 0 andN(sp) + N(t,) = 0 but
neithers, andt, nor s, andt; areantipodal.

(iv) —m < ®(54,50) = —®(ta, 1) < .

Conditions(ii) statesthatthe normalrotatesin onedirec-
tion aseachsegmentis traversed. Condition (iv) ensures
that a pair of antipodalpoints cannotappearon the same
segment,which doesnotincludes,, sp, to, Or tp.

Under condition (iii) (and (ii) and (iv)), a one-to-one
correspondencexistsbetweera points on S andapointt

1 This excludesa circle on which ary two pointsdetermininga diame-
terareantipodal.

onT:

N(s)+N(@) = 0, or equivalently; 1)
T(s)+T() = 0. 2)

Let g(s,t) = N(s) x N(t). Since ¥ = N(s) x
(—k(t)T(t)) = —k(t) # 0,2 by thelmplicit FunctionThe-
orem,theequationg(s, t) = 0 definest asa functionof s.
We referto t astheoppositepoint of s.

A pair of pointsmay be antipodalonly if their normals
do not point away from eachother We adda fifth condi-
tion:

(V) N(s)- (a(t) - a(s)) > 0forall s € (sq, p).
Differentiate (2) and then plug (1) in: (x(s)

k() 9L)N(s) = 0. Thusk(s)—k(t) 4t = 0and4t = =5,

2.1 Antipodal Angle

Definetheantipodalangl€’ 6(s) astherotationanglefrom
thenormalN (s) tothevectorr(s) = a(t)—a(s) (seeFig-
ure2). Undercondition(v), 8 € (=%, ). By definition, s

T(s)

Figure 2: Antipodalanglef.

andt areantipodalif andonlyif §(s) = 0.
To determing?’, we first calculatethe derivative:

d (THE -T(s))-r(s) _ [K(s) 0
gy = PRI = (1) e,
From Figure 2 we seethatsinf = N(s) x r(s)/||[r(s)||.

Differentiate both sides of this equationand substitute
d_ds”’"(s)” in. After afew morestepswe obtain

, _ cos® [ k(s)
fle) = ’“(S”ur()n(()“)' @)

Two antipodalpoint s* and¢* with 6'(s*) # 0 arecalled
simpleantipodalpoints

The restof Section2 presentsan algorithmto find all
simpleantipodalpointson § and7. This algorithmdeals
separatelwvith threecasessS and7 arebothconcae,both
corvex, or oneconcae andthe othercorvex.

2The Frenetformulas [10, pp. 56-58] for planar cures state that
T'(s) = k(s)N(s) andN’(s) = —k(s)T(s).
31n [2], it is referredto asthefriction angle.



2.2 Two Concave Segments

In thiscasex(s) < 0 andx(t) < 0; by (3),6'(s) > 0. The
antipodalangled increasesnonotonicallyfrom s, to sp.

Sa

ta ‘OI— ’/tb

Figure 3: Two concae segments. Sincef(s,) = 6, < 0 and
0(sp) = 6, > 0 exactly onepair of antipodalpointsexists.

Theorem 1 SupposeS and 7 are concave If §(s,) < 0
andf(s) > 0thenauniquepair of antipodalpointsexists.
Otherwise no antipodalpointsexist.

Whené(s,) < 0 andé(sp) > 0, we usebisectionto
find the antipodalpoints. Initialize (sq,t0) + (s4,t) and
(s1,t1) « (sp,t5). Thenevaluates, « 2042t andfind
its oppositepointts. If 8(sy) > 0, set(s1,t1) < (s2,t2);
otherwiseset(so,t) < (s2,t2). Repeathe above steps
until 8(s2) approache$, thatis, until s, and¢, approach
two antipodalpoints.

2.3 Two Convex Segments

Sincex(s) > 0 overS andk(t) > 0 over 7, we cannotde-
terminethesignof §'(s). Multiple pairsof antipodalpoints
mayexistonS and7 . Thefirst pairwill befoundthrough
“marching” describedn Section2.3.1if 6(s,) andf(sp)
have the samesign or throughbisectionin Sections2.3.2
if they have different signs. Section2.3.3 will describe
how all theremainingpairscanbefoundby lettingthetwo
stratgjiesinvoke eachotherrecursiely.

2.3.1 Endpoint Antipodal Angleswith the Same Sign

Themarchingstrateyy will rely onthefollowing result.

Proposition 2 WhensS and T are corvex, the vectorr (s)
rotatescounteclockwiseas s increasegroms, to s;.

Proof  We needonly shONthat‘fi—C x r < 0. Differenti-
atingthevectorr yields

T = 2 at) - als)) = T (1 + %> _

Sincex(s), k(t) > 0, wehave1 + ';((j; > 0. Hencedl
is in thedirectionof T'(t). Meanwhile,from condition(v)
thatr(s) - N(s) > 0 it followsthatT'(s) x r(s) > 0 and
T(t) x v(s) < 0. Therefore(2) x r(s) < 0. O
Figure 4 illustratesthe working of aniterative method
whenf(s,) < 0 andé(s;) < 0. Theiterationstartswith
s andt at sy = s, andty = t3, respectiely. From Propo-
sition 2, as s movestowardss,, the vector r(s) rotates
clockwise.At theith iterationstepmove s from s; t0 s;41
at which the normalis parallelto r(s;). If no suchpoint
si4+1 exists,stop. Otherwise movet from¢; to ¢;; where
N(tit+1) + N(si+1) = 0. The iteration continuesuntil

to ztb t,
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Figure 4: The working of the procedure Anti podal -

Convex- Mar ch whenf(s,) < 0 anf(sp) < 0.

s; andt; corvergeto a pair of antipodalpoints,asin Fig-
ure5(a),or they reachs, andt,, in whichcasenoantipodal
pointsexist asin Figure4.

Whené(s,) > 0 andé(s,) > 0, the marchstartsat s,
andt, and movestowardss; andt,, respectiely, in the
samemanner The methodhasbeenimplementedn the
procedureAnt i podal - Convex- Mar ch.

Below we establishthe correctnessf the procedure
whené(s,) < 0 andf(s;) < 0.

Lemma3 Inthecasef(s,) < 0 andf(s;) < 0 of thepro-
cedue Ant i podal - Convex- Mar ch, s; > s;1 andevery
s € [sit1, 8;) satisfied(s) < 0forall i > 0.

Proof We useinduction. Thatf(s¢) = 6(s;) < 0 fol-
lowsdirectlyfrom theinitial condition. Supposé(s;) < 0.
ThenormalN (s) rotatesclockwiseass decrease8om s;.
Also since N (s;) x r(s;) < 0 andthe normal N(s;1),
if s;41 exists, is in the direction of r(s;), we know that
Sit1 < 8; and

N(s) xr(s;)) < 0, forall s € (siy1,8:). (4)

By Proposition2, r(s;) rotatesclockwiseass movesfrom
s; 10 s;41; hence
r(s;) X r(s) <0, forall s € [siy1,5:i). (5)

Combininginequalities(4) and(5) with condition(v) that
N(s) -r(s) > 0 over(s,, sp), weinfer that

N(s) xr(s) <0, forall s € [si11,8:)-
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Figure5: Geometryattheantipodalpointss* andt*: 6’ (s*) < 0
ands* is closerto the centerof cunature O at s* thanto the
centerof curvatureO; att*. Heref; = 6(s;).

Thusé(s) < 0 forall s € [s;41, 5:)- O
Lemmag3 stateghatthesequencey, s1, - - ., definedby

(6)

is monotonicallydecreasingand no antipodalpoint exists
on [si,sp) = UL_,[sk,sk—1) for alli > 0. Supposehe
sgmentS hasat leastone antipodalpoint and let s* be
theoneclosesto s;. SeeFigure5(a). Thenthe monotonic
sequencés; } isboundedelan by s*. Soit mustcornverge
to some¢ € (sq,sp) Where N(&€) x r(§) = 0. Hence
& =s".

Next, we determinehelocal cornvergenceateof the se-
guence Apply Taylor's expansionof theiterationfunction
f wheres; 11 = f(s;) definedimplicitly by (6) at s*:

sirt =" = f(si) = f(s) = f(s")(si—s")+ .

Below we determinef’(s*). For simplicity, denotethe
antipodalangle §(s;) by 6;. As shavn in Figure 5(b),
sin; = N(s;) x N(s;4+1). Differentiatingboth sidesof
this equatiorwith respecto s; yields

N(SH—I) X ’I"(Si) =0

cos®; 0'(s;) = —k(s;)T(s;) X N(siz1) +

N(si) x (=k(sir1)f(5)T (si41) )
= —k(s;)cos8; + k(siy1)f (s;) cosb;.

Lett* betheoppositepoint of s*. Hencewe have

0'(s*) k(s*) + K(t*)
= 1= >0. (7)
K(s*) w(s*)k(t*) ||r(s*)]
Note that the iteration startsat s, wheref(s;) < 0
and never passess*. So6'(s*) < 0 musthold in the

f'(s™)

T(Si+1)

non-degeneratease. This andthat k(s*) > 0 imply that

f'(s*) < 1. Thereforethe corvergencerateis linear
Thecorrectnessndlinearcornvergenceatefor thecase

0(s,) > 0andd(sp) > 0 canbeestablishedimilarly.

Theorem 4 LetS and7 bothbecorvex. Supposéhetwo
antipodalanglesf(s,) andé(s;) havethesamesign. Then
thefollowing statement$old:

1. Whenno antipodalpointsexiston S and 7T, the pro-
cedue Ant i podal - Convex- Mar ch terminatesat s,
andt, if (s,) < 0 andf(s;) < 0 or at s, andty if
0(sq) > 0andf(sy) > 0.

2. Otherwisetheprocedue corvergesat linear rateto a
pair of antipodal points s* and¢* closestto the two
endpointsat which the iteration starts. Furthermoe,
8'(s*) < 0 musthold.

2.3.2 Endpoint Antipodal Angleswith Different Signs

In this case thetwo antipodalanglesd(s,) andf(s;) have
differentsigns.At leastonepair of antipodalpointsexists.
Tofind onepair, we useabisectionprocedureéint i podal -
Convex- Bi sect . At thefoundantipodalpointss* andt¢*,
eitherg’(s*) > 0 or6'(s*) < 0.

2.3.3 Finding All Pairsof Antipodal Points

After finding onepair of antipodalpointss* andt*, how do
we move on to find otherpairs of antipodalpointsif they
exist on corvex sggmentsS and 7 ?

Supposd(s,) andf(s,) have the samesign. Thens*
and t* have beenfound by the procedureAnt i podal -
Convex- Mar ch. Let usconsiderthe casethatf(s,) < 0
andf(sy) < 0. No antipodalpointsexistin (s*, sp) since
theiterationstartedat s, andendedat s*. Thaté'(s*) < 0
andf(s*) = 0 imply 8(s* — ¢) > 0 for small enough
e > 0. Thereforethe intenal (s,,s* — €) containsat
leastoneantipodalpoint. Sowe needto invoke the proce-
dureAnt i podal - Convex- Bi sect (s,,8* — €,t4,t* —9),
wheret* — § is the oppositepoint! of s* — e. Similarly,
whenf(s,) > 0 andf(sy) > 0, theinterval (s* + €, sp)
containsat leastone antipodalpoint. We needto invoke
Ant i podal - Convex- Bi sect (s* + €, sp, t* + 4, tp).

Supposd(s,) andd(s;) have differentsigns. Thens*
andt* arefound by Ant i podal - Convex- Bi sect . And
0(s*—e) hasthesignof §(s,) while (s*+¢) hasthesignof
0(sp). The procedureAnt i podal - Convex- Mar ch needs
to beinvokedonbothintenals(s,, s* —€) and(s* + ¢, sp)
to searchor possibleantipodalpoints.

Figure6 illustratesthe above procedureon anellipse.

4Notethaté > 0if t, < t, andé < 0 otherwise.
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Figure 6: Two pairsof antipodalpointson a pair of corvex el-
liptic sggmentsover (sq, sp) and(taq, ts), wherea(sa) = a(ts),
a(sy) = a(ts), andN(s,) = —N(ta). Anti podal - Convex-

Mar ch startsthe iterationat s, andt, andfinds the first pair of
antipodalpointss] andti. Next, Anti podal - Convex- Bi sect

isinvokedon (sq, sT —€) and(tq,t; —d1), whereN(t] —d1) =
—N(s] — ¢), andfinds a secondantipodalpair s5 andt;. Fi-
nally, Ant i podal - Convex- Mar ch is invoked again,on the pair
(84,85 —€) and(t,, t5 — d2) andonthepair (s3 + €, s] — €) and
(t5 + d3,t7 — 01), respectiely. It findsnomoreantipodalpoints.

2.4 Convex and Concave Segments

Without loss of generality supposeS is corvex and T is
concae. We againcomparethe signsof the antipodalan-
glesatthetwo endpointf S.

2.4.1 Endpoint Antipodal Angleswith the Same Sign

We first determindf oneof theraysextendingthe normals
N(t,) and N(t) intersectsS. Under conditions(i)—(v),

testingif theray extendingN (¢,,), or simply calledtheray
of N(t,), intersectsS canbe doneby checkingwhether
thecrossproducts(a(s,) — a(t,)) X N(t,) and(a(sp) —

a(t,)) x N(t,) have differentsigns.

Proposition 5 SupposeS is corvexand T is concave As-
sumethat the two antipodalanglesé(s,) and 6(s;) have
the samesign. No antipodal pointsexiston S and 7 if
neithertheray of N (¢,) northeray of N (t;) intersectsS.

Proof  For simplicity, we assumehat N (s,) pointsver
tically upward,asshowvn in Figure7. Undercondition(v),
S and7 mustlie onthe samesideof thetwo tangentines
L, andL; of S ats, andsy, respectiely.

Supposeneitherof the raysof N(t,) and N(¢;) inter
sectsS. BecauseV (t,) doesnotintersectS, ¢, is eitherto
theright of S ortoits left. If ¢, is to theright, condition(v)
determineghat the segment7 cannotcrossthe line con-
taining N (¢,) to its left. SoT lies entirelyto the right of
thesegmentsS, asshavn in Figure7(a). But all normalson
S pointto theleft. Thusno antipodalpointsexist.

If t, istotheleft of S, thend(s,) > 0. Sinced(s;) has
the samesign,§(s,) > 0. ThenS and7 mustlie on dif-
ferentsidesof theline containingN (¢;) asin Figure7(b).
Apparently they cannothave antipodalpointseither O

(@) (b)

Figure 7: No antipodalpoints. Neithertheray of N(t,) northe
ray of N(tp) intersectgshesegmentS.

Theiterationstartsat sg = s, andtg = t, if theray of
N(t,) intersectsS, or atsg = s andty = t; if theray
of N(tp) intersectsS. In eachround, s;;, is generateds
theintersectiorof theray of N(¢;) andS andt;; is gen-
eratedas its oppositepoint. The iteration stopsif the se-
quencesy, s1, - - - andtg, t1, - . . reachtheotherendpoints,
in which caseno antipodalpointsexist, or if they corverge
to a pair of antipodalpoints. Figure8(a) illustratesthis it-

=  Siv1
Sy=s, Si

@) (b)

Figure 8: Theiterationwhentheray of N(¢,) intersectsS.

erationwhentheray of N(¢,) intersectsS.

Lemma6 SupposeS is corvex and 7 is concave And
supposeheray of N(t,) intersectsS. In theaboveitera-
tion, s; < s;+1 andno antipodalpointsexistin (s;, s;+1]
and(t;, t;41] forall ¢ > 0.

The proof of the lemmais by inductionin a way sim-

ilar to the proof of Lemma3. Following Lemmag®, the
sequencds;} definedby

(alts) = @(si41)) x N(s9) =0 ®)



is monotonicallyincreasing.If thereexistsatleastonean-
tipodalpointon S, the sequence s; } will corvergeto the
first suchpoint s* from s,.

To studylocal corvergencerateof the procedurave dif-
ferentiateequation(8) to obtainthe derivative of theitera-
tion functiong wheres; 11 = g(s;) ats* [6]:

K(s*)
K(t*)

g'(s") = K(s")le(t”) — ax(s")l| = 9)

Becauses(s*) > 0 andk(t*) < 0, ¢'(s*) > 0. Because
0(s;) < 0,fori =0,1,..., weseethat

. 1 K(s*) )

)+ g (e +1) >0 40
in thenon-degeneratease Thisimpliesthat0 < ¢'(s*) <
1. Hencethe algorithm corvergesin linear rate. It also
follows from (10) thatt||ex(t*) — e(s*)| < 7=y + 7y
Geometrically the osculatingcircle at s* containsthe os-
culatingcircleatt* in its interior, asshowvn in Figure8(b).

Similar analysiscanbe performedfor the casethatthe
ray of N (t;) intersectsS. Thecorvergencerateis still lin-
earandé’(s*) > 0 alsoholds.

If no antipodalpointsexist on S and7, Ant i podal -
Convex- Concave- Mar ch will terminateatthe otherend-
pointsof S and7.

§'(s*) =

2.4.2 Finding All Pairsof Antipodal Points

Whentheantipodalanglesatthetwo endpointshave differ-
entsigns,we canusebisectionto find onepair of antipodal
points.

To find all pairs of antipodalpointson S and 7, the
marchingprocedurein Section2.4.1 and bisectionabove
needto recursvely call eachother This is similar to the
casethatS and7 arecorvex in Section2.3.3.

3 Curve Preprocessing

Thepreprocessingf thecurve a generateall pairsof sey-
mentsthat satisfyconditions(i)—(v) in Section2.1. It con-
sistsof thefollowing four steps:

1. Computeall pointsof simpleinflectionon a.. A point
s is simpleinflectionif k(s) = 0 but '(s) # 0. In
the examplein Figure 9(a), thereare four inflection
pointszy, 22, 23, andz4. They divide a into segments
on which the curvaturedoesnot changesign in the
interior.

2. Split every segment with total curvature beyond
[—7, ). In Figure9(b), the sggmentsover |z, 23] and
[24, z1] split atthe pointsw; andws,, respectiely.

>0
K>0 .
Z

Z\J
Z3

« N(Z1)
K - N(Z3)=N(U1)
- N(Z2)=N(U2)
(c)
% —
ta th

K
K<0
K<0
(a)
Z
Uy
U,
/_\ y )
Uy
ta t Z
Z3
(

d)

Figure 9: Four preprocessingteps.

3. Enumerateall pairs of sggments. For eachpair, de-
termineif ary of their endpointsareantipodal.If not,
shortenthe segmentsuntil condition (iii) is satisfied.
To illustrate, for the pair in Figure 9(c), we intersect
theconeof inwardnormalsover [z1, 23] with thecone
of outward normalsover [z3,24]. The intersection
cone(shaded)s determinecby the outward normals
at z3 and z4, which have oppositepointsu; andus,
respectiely. Accordingly, the sggment[zy, 23] is re-
placedwith the sggment]u, , uz].

4. Now each pair satisfiesconditions (i)—(iv) in Sec-
tion 2.1 but not necessarilycondition (v). In Fig-
ure 9(d), condition (v) is violated at bothu; andus.
We extract portions of the two segmentsdivided by
the tangeng points s,, t,, s, andt, of their com-
montangentines. Only theportionsover (s,, s;) and
(ta, ty) satisfyconditions(i)—(v).

In [6] we describeaninvolvedalgorithmwith quadratic
convergencerate that computescommontangentlines of
two curve sggments.

4 Implementation

We have implementedhe algorithmin C++ for arbitrary-
speedcurves. For detailsof implementationwe refer the
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Figure 10: Antipodal points on four different shapes: (a) a
corvex cubic spline; (b) an elliptic lemniscategiven by p =
\/62 cos? ¢ + 32 sin? ¢ in polar coordinates(c) alimagon p =
4 + 5cos¢; and (d) a curve with corvexities p = 3/(1 +
1 cos3¢). A non-degenerateclosedconvex cunwe, like the cu-
bic splinein (a), hastwo pairsof antipodalpoints[6]. Antipodal
pointsin (b), (c), and(d) canbe verified.

readerto [6].
The eight pairs of antipodalpointsin Figure 1 hasall
threecombinationsof curvaturesigns. Figure 10 displays

all antipodalpoints found on four more differentshapes.

Thefirst threeexampleseachtook time 10 mson a DELL
DimensionPCwith Pentiumlll 933MHz CPU.Thefourth
exampletook 30 ms.

Letn bethenumberof inflectionpointsandm thenum-
ber of pairsof antipodalpoints. Thereare O(n?) pairsof
segmentsafterthe preprocessingrhetotal numberof calls
to the marchingandbisectionproceduresn Sections2.2—
2.4is O(n? + m).

5 Conclusion

Thealgorithmdescribedn this papercomputesall antipo-
dal pointson a closedsimple curve up to numericalpreci-
sion. Inflection pointsdivide the curve into sggmentsthat
areeithercorvex everywhereor concae everywhere Such
monotonicityallows a recursve combinationof marching
with bisectionto find all antipodalpointsof differentlocal
geometry

The algorithmis also applicableto a curve thatis not

closedaslongasaninwardnormalfield is specifiedonthe
cunee. It canalsobe extendedin a straightforvardway to
acurvethatis piecavisetwice continuouslydifferentiable.

Due to the nonlinearnatureof curves, a corventional
nonlinearprogrammingapproachjnherentlylocal, would
rely heavily on initial guesse®f antipodalpositions. It
would be slow andnot guarantedo alwaysfind antipodal
points,notto mentionall of them.

The describedvork will beimplementedaspartof our
ongoing researchon localizationand graspingof curved
objects. Futurework will alsoinclude an extensionof the
algorithmto curvedshapesn 3D.
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