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Abstract— This paper models (large) deformations of shell-
like objects under the grasping of a robot hand. Classical
nonlinear theory of thin shells [21, pp. 186-194] is generalized
to shells with arbitrary parametric middle surfaces, using a
method introduced in our earlier work [13]. An experimen-
tal study demonstrates higher modeling accuracy using the
nonlinear elasticity theory than its linear counterpart. Given
that many deformable objects undergo sizable shape changes
when they are grasped, our result supports the application
of nonlinear elasticity theory in the future design of grasp
strategies for this type of objects.

I. INTRODUCTION

We deal with deformable objects everyday in our life.

Examples include clothes, plastic bottles, paper, magazines,

ropes, wires, cables, balls, tires, toys, sofas, fruits, vegetables,

meat, processed food (e.g., cakes, dumplings, buns, noodles),

plants, pets, biological tissues, and so on. The ability to

manipulate deformable objects is an indispensable part of

the human hand’s dexterity and an important feature of

intelligence.

In robotics, though much research has been done on

planning and manipulation that involve rigid objects, not

until recently did deformable objects start to get attention

from a critical mass of researchers. Work in this new area

has primarily targeted linear [26], [19] and meshed [9]

deformable objects. In particular, some researchers [24], [18],

[15] have investigated knotting and unknotting with ropes

and wires. Meanwhile, only a fraction of existing work has

been demonstrated through robot experiments.

In a grasping task, since the number of degrees of freedom

of a deformable object is infinite, it cannot be restrained by

only a finite set of contacts. Consequently, form closure is no

longer applicable. Does force closure still apply? Consider

two fingers squeezing a deformable object in order to grasp

it. The normal at each contact point changes its direction, so

does the corresponding contact friction cone. Even though

the initial finger placement may be far from being antipodal,

after the deformation the intersection of the contact friction

cones could still contain the line segment connecting the

two contact points, resulting in a force-closure grasp. To

understand the grasping process, deformable modeling plays

a very important role.

This paper experimentally investigates shape modeling for

shell-like objects that are grasped by a robot hand. A shell is

a thin body bounded by two curved surfaces whose distance

(i.e., the shell thickness) is very small in comparison with

the other dimensions. The locus of points at equal distances
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from the two bounding surfaces is the middle surface of the

shell. All shells in this paper are considered isotropic, i.e.,

having the same elastic properties in all directions.

Linear theory of thin shells [20] make simplifications that

ignore elongations and shears in comparison to unity, as

well as products of angles of rotation in comparison to

elongations and shears. The theory may introduce sizable

errors in grasping a shell-like object such as a ball, which

often results in a large deformation. This was confirmed in

our previous work [13].

This paper employs nonlinear theory of elasticity [21],

which deals with geometrically nonlinear (i.e., with large an-

gles of rotation) but physically linear (i.e., obeying Hooke’s

law) problems. The deformation of a grasped object is

determined through minimizing its potential energy (which

equals its strain energy subtracting the work done by the

robot hand to achieve the grasp).

The strain energy of a deformed shell depends on the

geometry of its middle surface and thickness, all prior

to the deformation, as well as the displacement field. In

this paper, we will rewrite strains in terms of geometric

invariants, essentially extending our transformation of linear

shell theory [13] to the nonlinear case.

We present an experimental study of the modeling of

deformations generated by two-finger grasping, where the

results yielded by linear and nonlinear theories of shells will

be compared.

Section II surveys related work in the FEM for shells

and other deformable modeling work in robotics. Section III

reviews the theory of nonlinear elasticity of shells, express-

ing strains in terms of geometric invariants to make the

theory directly applicable to arbitrary parametric surfaces.

Section IV sets up the subdivision-based displacement field

and describes the minimization process. Section V exper-

imentally investigates the modeling of deformable objects

grasped by a BarrettHand. It compares the linear theory

for small deformations and the nonlinear theory for large

deformations through validation against range data generated

by a 3D scanner. We will see that nonlinear elasticity based

modeling yields much more accurate results. Section VI

discusses future improvements on modeling, and links to the

next phase of our research on grasping of deformable objects.

II. RELATED WORK

The Finite Element Method (FEM) [8], [25], [2], for mod-

eling the deformations of a wide range of shapes, represents

a body as a mesh structure, and computes the stress, strain,

and displacement everywhere inside the body. Thin shell

finite elements, originated in the mid-1960s, typically include
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flat plates [29], axisymmetric shells [10], [22], and curve

elements [5]. More recently, computational shell analysis

in the FEM has employed techniques including degenerated

shell approach [11], stress-resultant-based formulations [1],

integration techniques [3], 3-D elasticity elements [6], etc.

For more on thin shell finite elements, we refer the reader

to two comprehensive surveys [27], [28] which cover work

before 1985 and from then on to 2000, respectively.

Due to heavy computation, FEMs often have to be sim-

ulated off-line, and do not model large deformations well.

FEMs for shells [14], due to their nature of discretization,

inaccurately treat higher order geometric invariants such as

curvature and torsion. The use of the closed-form energy

formulation could alleviate such problem. Nonlinear FEMs

(NFEMs) [23] work on large deformations, only at increasing

computational cost.

The boundary element method (BEM) [12] solves dis-

placements and forces on the boundary surface, and thus

is more efficient than the FEM.

In a contact-based task such as grasping or dexterous

manipulation, it is often sufficient to model deformations of

the contact regions only. The skeleton-based method [17]

computes the stresses/strains only at contact points and

geometrically salient points and then interpolates over the

entire surface.

In our previous work [13], the strain-displacement and

strain energy equations from classical (linear) theory of

shells [20] were transformed to become applicable to shells

with arbitrary parametric middle surfaces. This paper applies

nonlinear elasticity theory to model large deformations of

shell-like objects that are grasped by a robot hand.

To see the difference between nonlinear and linear elas-

ticity theories, we look at the simple example of a rotation

about the z-axis through an angle θ, which results in the

position change:
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No deformation is involved, hence no strain, as confirmed

by the nonlinear theory:
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However, linear elasticity theory yields a strain

ǫx =
∂u

∂x
= cos θ − 1.

III. NONLINEAR ELASTICITY OF SHELLS

Let σ(u, v) be the middle surface of an isotropic thin shell,

as shown on the left in Fig. 1. It is regular in that the tangent

plane at every point is spanned by the two partial derivatives

σu and σv . At a point q = σ(u, v) in the middle surface the

Darboux frame consists of the unit surface normal n and the

t2
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t’1σ u v
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δ
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n

q
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(  ,  )

Fig. 1. Deformation of a shell. The point p in the shell is along the
direction of the normal n at the point q on the middle surface.

two unit principal vectors t1 and t2. Under a deformation,

the displacement of q is given as

δ(u, v) = α(u, v)t1 + β(u, v)t2 + γ(u, v)n.

Kirchhoff’s assumption states that straight fibers normal

to the middle surface of a shell before the deformation

remain straight and normal to the middle surface after the

deformation. Under the assumption, the relative elongation

ε33 of a fiber along the normal n, and shears ε13 and

ε23, respectively, in the t1-n and t2-n planes (before the

deformation), are zero; namely,

ε33 = ε13 = ε23 = 0. (1)

Consider a point p = q + zn in the shell; so, q is the

projection of p on the middle surface and z the (signed)

distance. The displacement of p assumes the form

δ(u, v) + z





ϑ(u, v)
ϕ(u, v)
χ(u, v))



 . (2)

Classical theory of shells assumes the middle surface of a

shell to be a principal patch, that is, its partial derivatives to

be along the principal directions at every point. We here use

the treatment of large deformations of shells in [21, pp. 186-

194]. To make the theory applicable to an arbitrary paramet-

ric middle surface, we apply the technique in [13] to rewrite

strains and shears in terms of geometric invariants. These

invariants include principal curvatures, their derivatives with

respect to the principal vectors, and the covariant derivatives

of the principal vectors with respect to each other.

Let f and t be a function and a tangent vector field defined

on the surface σ, respectively. Denote by t[f ] the directional

derivative of f with respect to t, and by ∇tw the covariant

derivative of another vector field w with respect to t. At the

point q on the middle surface, we have

t[f ] = lim
∆s→0

f(q + ∆s · t) − f(q)

∆s
,

∇tw = lim
∆s→0

w(q + ∆s · t) − w(q)

∆s
.

At q, let ǫi, i = 1, 2, be the relative elongation of an

infinitesimal segment (which was in the principal direction
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ti before the deformation) as projected onto t i:

ǫ1 = t1[α] + (∇t1t2 · t1)β + (∇t1n · t1)γ, (3)

ǫ2 = t2[β] + (∇t2t1 · t2)α + (∇t2n · t2)γ, (4)

For example, ǫ1 consists of the change rate of the displace-

ment α along t1, and two components in the same direction

indirectly caused by the displacements in the two orthogonal

directions t2 and n.

Under the deformation, the rotations of the principal

vectors t1 and t2 about the normal n toward each other,

respectively, are:

ω1 = t2[α] − (∇t2t1 · t2)β, (5)

ω2 = t1[β] − (∇t1t2 · t1)α, (6)

In (5), for example, the first term represents the rotation of t 1

toward t2 due to the change in the displacement α (defined

in t1) along t2. The second term, to be subtracted from the

first, is the rotation amount that ought to happen due to the

variation of t1 along t2 and the displacement β in the latter

tangent direction.

Similarly, the next two terms quantify the rotations of the

surface normal n about t2 (t1, respectively) toward t1 (t2,

respectively):

φ1 = −t1[γ] + (∇t1n · t1)α, (7)

φ2 = −t2[γ] + (∇t2n · t2)β. (8)

By definition, −∇t1n · t1 and −∇t2n · t2 are the principal

curvatures in t1 and t2, respectively.

For a large deformation, we obtain the relative elongations

of infinitesimal line elements starting at q which, before the

deformation, were parallel to the two principal directions t 1

and t2, respectively:

ε̂11 = ǫ1 +
1

2
(ǫ21 + ω2

1 + φ2

1), (9)

ε̂22 = ǫ2 +
1

2
(ǫ22 + ω2

2 + φ2

2), (10)

as well as the shear in the tangent plane:

ε̂12 = ω1 + ω2 + ǫ1ω2 + ǫ2ω1 + φ1φ2. (11)

Note the appearance of nonlinear terms in equations (9)–(11).

The rate of displacement in (2) along the normal n at q

is determined from the six strain components (3)–(8):

ϑ = φ1(1 + ǫ2) − φ2ω1, (12)

ϕ = φ2(1 + ǫ1) − φ1ω2, (13)

χ = ǫ1 + ǫ2 + ǫ1ǫ2 − ω1ω2. (14)

The relative elongations and shear at p off the middle sur-

face are affected by the second order changes in geometry at

its projection q in the middle surface. They are characterized

by the following “curvature” terms:

κ11 = t1[ϑ] + (∇t1t2 · t1)ϕ + (∇t1n · t1)χ,

κ22 = t2[ϕ] + (∇t2t1 · t2)ϑ + (∇t2n · t2)χ,

κ12 = t1[ϕ] − (∇t1t2 · t1)ϑ,

κ21 = t2[ϑ] − (∇t2t1 · t2)ϕ,

κ13 = t1[χ] − (∇t1n · t1)ϑ,

κ23 = t2[χ] − (∇t2n · t2)ϕ.

Among them, κ11 and κ22 describe the changes in curvature

along t1 and t2; κ12 and κ21 together describe the twist of

the middle surface in the tangent plane; and κ13 and κ23

describe the twists out of the tangent plane.

The six terms κij form the following three parameters that

together characterize the variations of the curvatures of the

middle surface:

ζ11 = (1 + ǫ1)κ11 + ω1κ12 − φ1κ13, (15)

ζ22 = (1 + ǫ2)κ22 + ω2κ21 − φ2κ23, (16)

ζ12 = (1 + ǫ1)κ21 + (1 + ǫ2)κ12

+ω2κ11 + ω1κ22 − φ2κ13 − φ1κ23. (17)

Finally, we have the relative tangential elongations and

shear at p in terms of those at q in the middle surface:

ε11 = ε̂11 + zζ11, (18)

ε22 = ε̂22 + zζ22, (19)

ε12 = ε̂12 + zζ12. (20)

We have neglected terms in z2, as well as products of z with

the principal curvatures −∇t2n · t2 and −∇t2n · t2.

For small deformations, we neglect elongations and shears

compared to unity, for instance, 1 + ε1 ≈ 1 in (15), as well

as their products (also with curvature terms) such as ǫ1ω2

in (11). Equations (18)–(20) then reduce to

ε11 = ǫ1 + zκ11,

ε22 = ǫ2 + zκ22,

ε12 = ω1 + ω2 + z(κ12 + κ21),

which is the linear elasticity theory of shells.

The strain energy of the shell is an integral over the middle

surface S:

Uε =
e

2(1 − µ2)

∫

S

{

h

(

ε̂2

11 + ε̂2

22 + 2µε̂11ε̂22 +
1 − µ

2
ε̂2

12

)

+
h3

12

(

ζ2

11 + ζ2

22 + 2µζ11ζ22 +
1 − µ

2
ζ2

12

)}

√

EG − F 2 dudv. (21)

Here
√

EG − F 2dudv is the area element for the integral.

IV. SUBDIVISION-BASED ENERGY MINIMIZATION

Recently, shape functions used for subdivision surfaces

have been utilized as finite element basis functions for the

simulation of the deformation of thin shells [4]. In equa-

tion (21), ζ11, ζ22, and ζ12 characterize the variations of the

curvatures of the middle surface. They contain second order
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derivatives of the displacement. In order to ensure that the

bending energy is finite, the basis function interpolating the

displacement field and its first- and second-order derivatives

have to be square integrable. Loop’s subdivision scheme

meets such requirement [16].

In a subdivision-based finite element, the basis functions

supporting an element are those which correspond to nodes

in the neighborhood of the current face of the control mesh.

The displacement field within the shaded element in Fig. 2

Fig. 2. A regular patch with 12 control points.

depends on the displacements of the nodes defining the

element and of all the immediately adjacent nodes in the

triangulation.

δ(u, v) =

12
∑

i=1

Ni(u, v)δi (22)

where δi is the displacement of the ith control point in the

neighborhood domain, and N i(u, v) is the basis function.

Since at the equilibrium state the shell has minimum total

potential energy [7, p. 260], we can obtain the displacement

field as follows. Differentiate the total potential energy with

respect to the displacement coordinates of the control points

of the subdivision. Setting the partial derivatives to zero, we

have a system of equations.

Small deformations are governed by linear elasticity the-

ory, the resulting linear equations can be easily solved. In

comparison, large deformations are governed by a system of

nonlinear equations that often has to be solved iteratively.

An initial displacement field is generated as follows. The

displacement of a point in the neighborhood of some contact

point is approximated by a linear function in the distance be-

tween these two points and proportional to the force exerted

at the contact point. Minimization is conducted toward the

radius of the deformed area. After that, the conjugate gradient

method is used to refine the results. Each minimization step is

performed along the conjugate direction of several preceding

gradients. The iteration continues until the gradient becomes

zero when a local minimum of the total potential energy is

reached. Interpolation in the local neighborhood improves

the computational efficiency for nonlinear method. It usually

takes several minutes to compute the deformation compared

with several seconds for linear case.

V. EXPERIMENT

As shown in Fig. 3, the experimental setup includes an

Adept Cobra 600 manipulator, a three-fingered BarrettHand,

and a NextEngine’s desktop 3D scanner. Every finger of

Pin

BarrettHand Fingertip

Tennis Ball

Adept Robot Open End

Scanner

Soda Can Setup

Fig. 3. Experimental setup with a tennis ball and a soda can (lower left).

the BarrettHand has a strain gauge sensor that measures

contact force. To model point contact, a pin is mounted

on each of the two grasping fingers. A triangular mesh

model of the deformed surface due to finger contact is

generated by the NextEngine’s desktop 3D scanner with

an accuracy of 0.127mm. In our experiment, we measure

the modeling accuracy by matching the computed deformed

surface against the corresponding mesh model and averaging

the distances from the mesh vertices to the deformed surface.

In our previous work [13], we used the linear elasticity

theory to model deformation of half of a soda can. By in-

corporating nonlinear elasticity theory, the average modeling

error has decreased from 0.36mm to 0.21mm (see the setup

at the left bottom corner of Fig. 3). The last row in Table I

displays the scanned image of the deformed can and those

constructed using the nonlinear and linear methods.

For further comparison, we have also conducted exper-

iment on a tennis ball grasped at antipodal positions by

BarrettHand (show in Fig. 3). The ball has a diameter

of 65.0mm. Its rubber has thickness of 2.5mm. We choose

the rubber’s Young’s modulus of 1MPa, and Poisson’s ratio

of 0.5. Point contact is assumed between the ball and the

finger. We use two subdivision-based displacement fields,

one for each finger contact. Each subdivision patch is defined

over a 45mm × 45mm patch, which is large enough to

describe the deformed area based on our observation.

Table I displays the comparison results. The first column

in the table lists the exerted forces on each finger. The

second and third columns list the deformed shapes produced

by the scanner. The next two pairs of columuns present

the corresponding deformations computed according to the

nonlinear and linear elasticity theories, respectively. In the

table, each row corresponds to one instance of deformation.

The first four shapes result from grasping the tennis ball.

From the table, the nonlinear modeling results have

smaller errors than the linear modeling results in four out of

five rows, all corresponding to large deformations. For the

small deformation in the first row, the two simulation results

have comparable errors, which suggests the deformation
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scanned deformation nonlinear deformation linear deformation
force measured average average

shape max disp. shape error shape error
(lbf) (mm) (mm) (mm)

2.39 2.56 0.31 0.30

3.71 6.05 0.62 0.85

4.58 9.12 0.81 2.0

4.83 10.27 0.65 2.37

0.17 1.42 0.21 0.36

TABLE I

COMPARISONS BETWEEN LINEAR AND NONLINEAR DEFORMATIONS ON A TENNIS BALL (FIRST TO FOURTH ROW) AND A SODA CAN (LAST ROW).

is within the range of linear elasticity. Starting from the

second row, the two methods generate shapes that are visibly

different from each other. In the second instance, the shape

generated by the nonlinear method has an obvious dent

comparable to the one on the real shape shown to the left,

whereas the shape by the linear method to the right hardly

shows any dent. We see that the larger the force, the bigger

the difference between nonlinear and linear deformations.

The results suggest that the nonlinear method yields small

modeling errors when large deformations occur.

Grasping causes deformations in the regions around the

contact while the rest of the surface hardly deforms. Fig. 4

shows the deformed regions, under the finger force of

4.83lbf, superposed onto the scanned undeformed model of

the tennis ball. The red curves, one at the top and the other at

the bottom, mark the borders of these deformed regions. The

measured maximum displacement of 10.27mm is achieved at

the dark points. Due to symmetry, we only display the top

deformed area. We see that the two antipodal contact points

move closer under the force exerted by the two fingers. The

scanned deformations on the tennis ball and the nonlinear

results are within 7% of each other from the fourth row of

Table I.

Several factors have affected the accuracy of modeling:

occlusions to the scanner, accuracy of the scanner, errors in

0D[�GHIRUPDWLRQ�SRLQW

Fig. 4. Deformed tennis ball under grasping. The points in contact with
the fingers have maximum displacments of 10.27mm.

the force readings, and the air pressure inside the tennis ball.

Because the scanner is much larger than the tennis ball and

the BarrettHand fingers, the deformed shape is scanned at

different orientations and the resulting patches are combined.

This process introduces errors. During the experiments, the

zero point of the BarrettHand’s strain gauge sensors tends to

drift a little bit, leading to errors in force readings. Finally,
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the air inside the ball also influences the deformation, and

this effect is not modeled in the experiment.

VI. DISCUSSION

The experimental results indicate the existence of a state of

deformation at which the modeling should switch from linear

elastic to nonlinear elastic. Though the nonlinear elasticity

theory of shells suggest simplifications that would turn the

problem into a linear one for small deformations, a further

empirical investigation is needed given the inaccuracy of

(even) the nonlinear model due to its assumptions, measure-

ment errors of the physical constants, and other uncertainties.

In real time modeling of, say, grasping, computational time

can be critical. A linear elastic model is more efficient than

a nonlinear elastic model, it would be very useful to gauge

the transition point.

Employing the closed form of strain energy in replacement

of discretization-based differentiation, our method follows

the physics of elasticity more closely and is expected to be

more accurate than the FEM. We will compare the modeling

performances of the FEM and our method in the near future.

The presented work assumes point finger contacts. In

practice, as the robot fingers press a deformable object to

secure a grasp, the contact regions grow larger. Under such

a circumstance, modeling should be improved by considering

area contacts and distributed loads. Tactile array sensors will

be installed on the BarrettHand for dynamic detection of

contact regions on the fingertips. It would also be interesting

to examine the relationship between an object’s energy and

its equilibrium grasp.

An antipodal grasp typically results in deformations in

small parts of an object. One objective in the future is to

simulate twisting and bending of a grasped object. In this

case, it is even more important to use the nonlinear model

since linear deformations do not model rotations well, and

can yield distortions when displacements are global.

In the future, we would also like to consider solid objects

which are more common in a robot task than shell-like

objects. One plan is to develop an interactive environment

that can model deformations of shell-like and solid objects

as the shape changes. Such an interface will facilitate the

analysis or synthesis of grasp strategies for these types of

objects.
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