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Surface Patch Reconstruction From
“One-Dimensional’ Tactile Data

Yan-Bin Jia and Jiang Tian

Abstract—This paper studies the reconstruction of unknown curved sur-
faces through finger tracking. A patch can be generated from tactile data
points along three concurrent surface curves under the Darboux frame es-
timated at the curve intersection point. Surface fitting while minimizing the
total (absolute) Gaussian curvature effectively prevents unnecessary folds
otherwise expected to result from the use of such “1-D” data. The imple-
mentation involves a two-axis joystick sensor, a three-fingered 4-DOF Bar-
rettHand, and a 4-DOF Adept SCARA robot. Experiments have demon-
strated good accuracy of reconstruction.

Index Terms—Contour tracking, shape reconstruction, surface fitting,
total Gaussian curvature, touch sensing.

[. INTRODUCTION

Objects with curved shapes are ubiquitous in our lives, from small
ones such as pens, computer mice, or teapots to big ones such as chairs,
cars, or airplanes. The differentiability of a curved shape allows smooth
integration of kinematics, dynamics, and control, which paves the way
for skillful maneuvers by a robot hand [13].

The human hand can often feel an unknown shape by moving the
fingers across its surface. A robot hand with touch sensing capability
should be able to accomplish the same. The difference is that the human
hand can control its motions smoothly (and freely) based on its sensa-
tions. In addition, the number and density of tactels on a finger or the
palm of the human hand far exceed what can be fabricated into a tactile
array sensor with which a robot hand is equipped.
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Shape reconstruction has traditionally been carried out by a vision
system or a laser scanner. For example, many off-the-shelf laser scan-
ners can produce global shapes efficiently with high accuracies (in hun-
dredths of a millimeter). However, vision and scanner systems suffer
from occlusions due to viewing angles and shape concavities. In a task
like dexterous manipulation that requires close contact, the robot hand
needs to determine the (local) shape in touch before or amid a ma-
neuver, but the target area is usually occluded from the camera (by the
hand itself). In addition, the lighting conditions may change during a
task, and the background information may be distracting and difficult
to filter out. The quality of range data also deteriorates in the presence
of a motion. Although vision has been integrated with tactile sensing in
tasks like object recognition and grasping [1], its usage is rather limited
in other tasks such as in-hand dexterous manipulation [38] and percep-
tion of fine surface features [24].

Touch sensing is often the modality of choice in a task that heavily
depends on the local shapes of the object surrounding the finger con-
tacts. Tactile data usually reveal enough about the local geometry of
contact for the execution of the task [4], since for them, occlusion
ceases to be an issue.

In this paper, we demonstrate that the local shape of a three-dimen-
sional (3-D) object in contact can be estimated using “one-dimen-
sional” (1-D) data, namely, points sampled along three concurrent
curves on the surface. The reconstruction is carried out by first recov-
ering the differential geometry at the curve intersection point and then
by fitting over the data under some geometric constraint. Compared to
mechanical probing, curve tracking is a much more efficient physical
operation to perform.

Besides the use of minimal data, the proposed reconstruction scheme
has the ability to model general curved shapes (at least locally) with
no constraints on the principal curvatures. Existing tactile recognition
and reconstruction methods primarily use 2-D array data [1], [2], [18]
with longer acquisition time. Some of them either assume special ge-
ometry (e.g., planar, polyhedral, spherical, cylindrical, or generalized
cylindrical) of the objects [18] or show experimental results only on
such objects [43].

Our experimental setup is a two-axis joystick sensor attached to one
finger of a 4-DOF BarrettHand, which is mounted on a 4-DOF Adept
Cobra 600 manipulator. The Adept’s high positional accuracies! allow
us to simplify tracking control and focus on reconstruction over contour
data. Good accuracies of reconstructed patches have been demonstrated
experimentally by matching against mesh models of the same objects
generated by a commercial 3-D scanner.

Besides grasping and dexterous manipulation, our tactile reconstruc-
tion method may be applicable in robot-assisted surgery where details
of a defected bone are sometimes occluded from a camera. Other po-
tential applications include robotic planetary exploration, modeling of
manufactured parts, and even rock climbing. For instance, in a situation
like cave exploration where a camera will not work well due to occlu-
sions and dim lighting conditions, a robot may have to rely on touching
and fumbling to feel the rocks around in its search for a path.

In Section III, we describe a canonical polynomial representation of
a surface patch under the Darboux frame estimated at the intersection
point of three data curves. Each curve is generated by tracking the sur-
face with a joystick sensor while constrained in a separate plane. The
idea is to reduce the physical component of 3-D reconstruction into
multiple subproblems of 2-D contour tracking.

Section IV describes a surface fitting algorithm that takes the insuffi-
cient “1-D” tracking data and simultaneously minimizes the total abso-
lute Gaussian curvature of the surface function. Section V discusses im-
plementation issues and presents some reconstruction results. Finally,

10.02 mm in the - and y-directions and 0.01 mm in the z-direction.

Section VI discusses various aspects of the presented research and out-
lines the future effort.

II. RELATED WORK

This paper is about reconstruction of curved surfaces. The physical
operation involves tracking with a touch sensor under hybrid control.
A surface patch is obtained through fitting over the tracking data in a
local frame that is set up via estimation of principal curvatures.

A. Contour Tracking

Hybrid position/force control, originally proposed by Raibert and
Craig [42], has been a favorable implementation strategy for tracking.
Independent position control and force control are applied along un-
constrained and constrained directions, respectively. Khatib and Bur-
dick [31] later incorporated the dynamic coupling effects of motion and
force equations at each robot joint.

De Schutter and Van Brussel [15] investigated tracking of un-
known 2-D contours with constant tangential speed and contact
force. Demey et al. [14] employed a 6 degrees-of-freedom (DOF)
force/torque (F/T) sensor to carry out tracking of 2-D contours with
known models. Oscillations during tracking were compensated by
Jatta et al. [26] through the addition of a normal velocity feedback
loop. Without resorting to direct force control, Lange and Hirzinger
[32] enhanced second round contour tracking by transforming readings
from an external F/T sensor into desired locations for position control.

In practice, contours (and motion constraints) are often unknown,
and can be guided by a vision system [3]. Xiao et al. [51] also used
visual guidance fused with hybrid position/force control to follow a
trajectory (specified in the image plane) on an unknown surface.

B. Curvature Estimation

Methods for obtaining principal curvatures from normal curvature
estimates have been developed mostly over dense range data [11], [23],
[47] to better deal with noise. They are not robust when applied to
sparse tactile data.

Analytical methods [21], [45] for curvature estimation generally fit
over range data in the neighborhood of some point of interest and then
obtain the first and second fundamental forms through differentiation.
In [20], the principal curvatures were obtained through an initial fitting
followed by an iterative minimization over their variations, as well as
the variations along the surface normal and principal directions. Dis-
crete methods based on surface triangulation such as in [33] may suffer
from large estimation errors due to loss of differentiability.

Fearing and Binford [19] employed a cylindrical tactile fingertip
mounted on the Stanford/JPL hand to estimate principal curvatures
on quadric surfaces. In [30], curvatures, torsions, and their derivatives
were estimated at points on one or two curves embedded on a surface,
and based on them, differential invariants were derived for recognition
of special surfaces. Smoothing of a planar curve was achieved through
curvature minimization in order to extract segments at multiple scales
for recognition [16]. In [25], two rounds of local fitting over tactile data
from a 2-D shape were applied to robustly estimate the curvature and
its derivative with respect to arc length.

C. Shape Reconstruction

In computer vision, shapes are often represented implicitly using
polynomials generated via least-squares fitting, mostly for the con-
venience of operations such as inside-outside testing, handling of
noisy data, and computation of algebraic invariants for recognition
[28]. Polynomials of even degrees are often used because their level
sets are bounded, which is not the case for those of odd degrees [48].
Typically, a subclass of quartic polynomials is chosen and constraints
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are incorporated into least-squares formulations [29], [46]. Multiple
level sets may also be used to further constrain the fitting, as in the
case of the 3L algorithm [5].

Shape reconstruction using touch sensors has been studied by a
number of researchers in robotics. Montana [37] derived a set of
differential equations governing contact kinematics and employed it
to estimate the local curvature of an unknown object under rolling
contact with the robot finger. His contact equations were later used in
[12] for measuring principal curvatures and directions from tactile data
for motion control under rolling and sliding contacts. Bicchi et al. [4]
considered shape reconstruction of an unknown object during rolling
manipulation by a dexterous gripper.

Allen and Michelman [2] employed a Utah-MIT hand to obtain
sparse contact points around an object and then fit a superquadric
surface to the data as the reconstructed shape. An active sensing
strategy was proposed in [10] to reconstruct local shape as a second
order polynomial over dense tactile array data and servo the robot mo-
tion based on such shape information. The work by Charlebois er al.
[9] involved the use of a B-spline over position, as well as normal
data. Ellis and Qin [17] studied shape recovery from the strain on a
tactile sensor, formulating it as an optimization problem solvable by
the Levenberg—Marquardt method. Moll and Erdmann [36] showed
how to simultaneously estimate the shape and motion of an unknown
convex object from tactile readings on multiple manipulating palms
under frictionless contact.

Over dense 3-D point data, triangulation [6], [34] is effective in
constructing a model that reflects the correct topology of the original
object.

III. PATCH ON A SURFACE

In the remainder of the paper, we will demonstrate that surface
patches can be reconstructed rather accurately from seemingly insuffi-
cient “1-D” data generated by finger tracking. We employ the tracking
subroutine from [35], which can reliably generate high accuracy? 2-D
contours.

A. Approximation in a Local Frame

We begin with some geometric basics that are needed for the task.
Let p be a point of interest on a curved object. We would like to obtain
some description of a local area, or a “patch,” surrounding p on the
object’s surface. The following assumption is made.3

A one-to-one correspondence exists between the patch to be
reconstructed and its projection on the tangent plane at p.

Under the assumption, we need only consider a Monge patch which
has the form o (x, y) = (2, y, z(x,y)). Here, we let = be approximated
by a polynomial i< Wi sa'y?, where the degree d is chosen to
reflect the geometric variation in the target area.

Set up a local frame at p with its xy-plane aligned with the tangent
plane to the surface at the point, and its z axis aligned with the outward
normal n. Any plane through p that is normal to the tangent plane will
intersect the surface o at a curve (at least locally). Its curvature x,
at p is the normal curvature of o in the tangent direction where the
two planes intersect. It is well-known that ,, achieves its minimum
and maximum (in case they are not equal) in two orthogonal tangent
directions that are called the principal directions, denoted by d, and d>,
at p. These two extrema are the principal curvatures k1 and x2 in d;

2within £0.1 mm according to measurements.

3The assumption makes connection to a coordinate patch, which is a
one-to-one and regular mapping from an open set of R? to R? ([39, p. 124]).

024 /p d,

Fig. 1. Tangent plane at the reference point p of sampling.

and ds, respectively. The product k' = k1 k2 is the Gaussian curvature
at p.

The normal n and the principal directions d1 and d» form the Dar-
boux frame under which the local surface patch is shown [27] to take
the form

1 . . D
z(x,y) = 5(1@1;52 + ray®) + Z aija'y’. 1)

3<itj<d

Note that the principal curvatures of z(x,y) will stay as r1 and 2
regardless of the higher order terms.

To reconstruct a patch surrounding p, we intend to fit the form (1)
over tactile data. Fitting is facilitated with the choice of the Darboux
frame under which the coefficients of all subcubic terms are known.
The tactile data are specially arranged so we can estimate the principal
curvatures and locate the principal directions.

B. Solution of Principal Curvatures

We estimate the two principal curvatures s and k2 at the refer-
ence point p from normal curvatures in different tangent directions.
The angle # between one of these tangents and one principal direction
also determines the other principal direction due to their orthogonality
in the tangent plane. So there are essentially three unknowns: 4, k1, k2.
This suggests that we need to measure at least three normal curvatures,
say, Ka, K3, and k- in the tangent directions £, %z, and £, (shown in
Fig. 1), respectively. How to measure these curvatures will be described
in Section III-C.

The two principal directions are d; and ds. The angle ¢ is from d;
to t., while the angles #; and 6> are from ¢, to tg and ¢, respectively.
Here 6, and ¢- are easily determined from the tangents. The normal
curvatures can be expressed in terms of the two principal curvatures
[41, p. 137]

Ka = K1 cos? 8 + Ko sin ¢
Kg = K1 COSZ(Q + 01) + K2 sin?(6 + 1)
K1 COSZ(9+92)+H2 sinz((7’+92). 2)

Koy

From (2), we obtain

K2

Fa — kg = (cos(28) — cos(26 + 26,)) - m% 3)
K2

K1 —
Ko — Ky = (cos(26) — cos(26 + 265)) - % 4)
In the special case that k., = k3 = k-, two possibilities arise.
a) K1 = k2. So, the reference point p is umbilic with constant
normal curvature. Every direction in the tangent plane is a prin-
cipal direction. We arbitrarily choose two orthogonal directions

as d; and ds.
b) k1 # ko.So,cos(28) = cos(260+26,) = cos(26 4 26-), which
implies #; = w, 02 = 7, or#; — 6> = 0 or 7w, namely ¢, =

—tg,to = —t,, ortg = xt,. This situation can be avoided by
measuring normal curvatures in noncollinear directions.
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sampling
plane

Fig. 2. Data curve « lies where the sampling plane IT, intersects the surface.

In the general case where k., k3, and & are not all equal, one of
the curvatures must be different from the other two. Assume that it is
K. A few more steps of manipulation on (3) and (4) yield

. B sin(f, — 62)
tan(26 + 6,) = Ka—tp  sin g (0, — 6
o= cos(#1 — 62)

from which we obtain # and thus the principal directions. The Darboux
frame is now determined. Substituting ¢, #1, and ¢ into two of the
equations in the system (2), we can solve for the principal curvatures
k1 and Ko.

Chen and Schmidt [11] used least-squares fitting over more than
three normal curvatures estimated less accurately. The method by
Taubin [47], though more robust than ours, requires dense range data.

C. Normal Curvature Estimation

It is time to look at how to determine the tangent plane and measure
three normal curvatures at the reference point p. We use a touch sensor
to track the surface, while constraining the sensor motion in a plane
through p, which we call the sampling plane. This is a planar contour
tracking problem except the plane is arbitrarily oriented rather than
horizontal as studied by many researchers [14], [15], [26], [32]. The
tracking data are discrete points along the intersection curve « of the
sampling plane and the surface (see Fig. 2). The description of « is,
of course, unknown just like the shape. For convenience, we identify
these data points with the curve and called them the data curve. Then,
we fit a quadratic polynomial over those data points very close to p to
estimate the tangent, say, ¢, and the curvature ., at the point.

Similarly, two other data curves 3 and ~ through p lying in different
sampling planes are obtained. We again estimate the tangents £3 and
t, as well as the curvatures k3 and x.,.

The surface normal = at p is obtained through optimization

. 2 2 2
ﬁu”:ll(" ta) +(n-ts)" +(n-t,)".
With n known, the tangent plane II at p is determined.

The vectors £, and n define a normal plane through p that forms
an angle ¢, with the sampling plane Il . By a result from differential
geometry [4, pp. 127-128], the normal curvature in the direction %, is
Ko = ki cos f,. Similarly, we obtain the normal curvatures x5 and
k-~ in the directions 5 and #.,, respectively.

IV. SURFACE PATCH RECONSTRUCTION

In the Darboux frame formed by the principal directions d; and
d> and the outward normal n, we fit the polynomial description (1)
over all the data points (w;,yi,2i), 1 < i < n, sampled along «,

(a) (b)

Fig. 3. (a) Broken plastic bottle and (b) its reconstructed neck region by fitting
under no constraint.

3, and ~. The degree d of the polynomial is set to be 4.4 Write @ =
(aso, az1,...,ao4) to include the nine polynomial coefficients, which
are determined in a least-squares sense

n

. 1 2

min f(a) where f(a)= — (e, yk) — 2k)". ®)
tin f( (a) = —~ kz::l( ( )= )

Here, f(a) bounds the total squared distance from the data points to

the patch (1) defined by a.

Fig. 3 shows a broken plastic bottle (a) and the reconstructed patch
(b) of the marked neck region. We have sampled n = 57 points (red)
along three concurrent curves inside the neck region. They are dis-
played in part (b) of the figure. Their intersection point [marked inside
the neck region in part (a)] is parabolic with estimated principal curva-
tures —0.0423 and 0.0172. We measure the average fitting error

1 n
E= ;;Mikvgk)—m- (6)

Although the error is small (0.0461 mm) over the 57 data points, the
reconstructed patch does not nearly resemble the bottle’s neck region.
It has “peaks” and “valleys.” To get a sense of this discrepancy quan-
titatively, we use 171 points (blue) sampled along nine extra curves
through the same reference point. The average error (6) over these
points then rises up dramatically to 13.0041 mm.

A. Constraining the Fitting Surface

Naturally, we would like the reconstructed patch to look “smooth”.
This patch is assumed to be a “local” one where any drastic changes
of geometry like “peaks” or “valleys” between the three data curves
are not expected. From the bottle example, it is apparent that three data
curves do not provide enough constraints on fitting.

One approach is to generate artificial data points by, say, interpola-
tion, between the data curves, and then fit over all the data. After many
trials, we have found that interpolation simply could not produce sat-
isfactory shapes when verified against extra real data. Artificial data
points tend to shape the surface fit with a bias imposed by the interpo-
lation scheme itself. The areas between the three data curves are just
too large for interpolation using some spline-like functions.

The objective function in (5) for fitting needs to include a term that
can measure the “degree of folding” of the surface fit. We make use
of the fotal Gaussian curvature, which is defined as the integral of the
Gaussian curvature over a surface patch o : [ fa K dA. Geometrically,
it is the algebraic area of the region formed by points on the unit sphere
that correspond to all normals on the patch [39, p. 290].

4Quartic polynomials are capable of describing a wide range of real objects
so that several subclasses are commonly used as shape models.
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Let D be the domain of the surface fit in the tangent plane at the
reference point p (i.e., the xy-plane). Since a patch may be “folded”
many times over a small region on the unit sphere to still yield a small
total Gaussian curvature, we use the absolute value of K :5

// | K (z,y)] - /1 + 22 + z2dady. @)
D

Here, the area element /1 + 22 + zZ dady is included. The more the
patch folds, the larger the integral (7), and vice versa. The reconstructed
patch in Fig. 3 has total absolute Gaussian curvature 16.6031, which is
too big¢ for a small region on the bottle.

Given a polynomial surface fit (1) with the coefficient vector a, we
evaluate the total absolute Gaussian curvature (7) numerically. For the
ease of computation, the patch domain D is chosen to be inside a
cubic spline that passes through the end points of the projections of
a, 3, and v onto the xy-plane. Discretize D into a grid of m points
(u1,v1)s. .y (Um, vm) with uniform spacing h. The integral (7) is ap-
proximated by
) =123 (1K 0s00)

j=1

1)+ ) )

Patch reconstruction over the n data points is done through mini-
mizing the total absolute Gaussian curvature subject to the constraint
that the surface fit should “pass through” these points

main gla) + Af(a). ©)

The Lagrange multiplier A has the unit mm ™2,

B. Minimization

Note that the function g(a) depends on the signs of the Gaussian
curvatures K (u;,v;), 1 < j < m, which could vary from the current
coefficient estimate a'”) to the next one a/*". To cope with this issue,
at a”) for every grid point (u,, v;), we define

1 f K(uy,v;) > 0;
5=19_,

if K(uj,v;) <0.

Replace |R (uj,v;)| with §; K (u;,v;) in the definition (8) of g(a).
This results in an equivalent function g(a) in some neighborhood of
a'V in the coefficient space. Performing the steepest descent along the
negative gradient —V(f(a) + Aj(a)) yields the next estimates a''+%)
and A\ If the gradient becomes zero, we have found a (local) min-
imum of (9). Otherwise, the iterations continue. The initial value of
the coefficient vector, a®, is obtained from unconstrained fitting of
(5) over the data points and some onetime artificial points generated
through linear interpolation. The initial value M) js chosen after sev-
eral trials.

We reconstruct the neck region of the plastic bottle in Fig. 3(a)” over
the same three (red) data curves from Fig. 3(b), and the result is shown
in Fig. 4. The same nine extra curves (shown in blue dots) from Fig. 3(b)
yield an average fitting error (6) of 0.0859 mm, a dramatic decrease
from 13.0041 mm for the old patch generated by fitting under no con-
straint. The total absolute Gaussian curvature of the new patch is 0.0329

SMinimization of the total absolute Gaussian curvature for triangulating a
dense data set was introduced by van Damme and Alboul [50]. An NP-hardness
result was given in [8] for such triangulation of a terrain with fixed vertex set
and boundary.

6The total curvature of any closed smooth surface in 3-D is only 4, which
equals the area of a unit sphere.

"The multiplier A has value 9.99 mm~—2.

Fig. 4. New patch reconstructed over the same neck region in Fig. 3 by fitting
while minimizing the total absolute Gaussian curvature.

Fingertip

Push Pin

(b)

Fig. 5. Setup for surface tracking and reconstruction: (a) Adept manipulator,
BarrettHand, and touch mechanism (encircled), which is enlarged in (b).

compared to 16.6031 for the old patch. The slight increase in the av-
erage error from 0.0461 to 0.0514 mm over the three original curves is
expected because of the extra term g(a) in (9) to minimize.

V. IMPLEMENTATION AND RECONSTRUCTION RESULTS

As shown in Fig. 5, the experimental setup includes an Adept Cobra
600 manipulator, a three-fingered BarrettHand, and a joystick-based
tracking device. Here, the joystick® is horizontally placed and right
below a pivoted lever beam. When a vertical push pin attached to the
beam’s distant end touches a surface, its close end moves downward,
causing the joystick to bend. The contact point between the push pin
and the surface can be located using the combined forward kinematics
of the Adept’s end-effector and the BarrettHand.

The Adept manipulator has four DOFs, same does the BarrettHand.
Nevertheless, only one finger is used in the tracking and it does not
have yaw. So the push pin has only five DOFs. For convenience of im-
plementation, we limit the tracking motions to be in the vertical planes.

While sampling data points along a curve, the system estimates
the current normal direction, and align the orientation of the Joystick
sensor with the normal estimate by rotating the corresponding finger of
the BarrettHand. The tracking motion is made up of small movements
within each of which the robot commands constant horizontal and
vertical velocities. The distance of a vertical movement is determined
based on the force measurement from the joystick.

To determine the accuracy, we match reconstructed patches on
several objects against their mesh models generated by NextEngine’s
desktop 3-D scanner. The accuracy of the scanner is 0.127 mm. Each
mesh model has between 16 000 and 85 000 vertices that form dense
point clouds. The normal at a mesh vertex is estimated by averaging
the normals of its adjacent triangles. To align a patch with the corre-
sponding mesh model, we place its reference point at a vertex on the
model. Align the tangent plane at the vertex with the xy-plane in the
local Darboux frame at the reference point, and rotate the data curves
about the z-axis to find the best match. Iterating over all the mesh
vertices will register the data curves onto the mesh model.

8With frequency 10-100 Hz and force range of 0.196-1.666 N.
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TABLE I
SURFACE PATCHES (BLACK) RECONSTRUCTED SURROUNDING MARKED REFERENCE POINTS ON A SHELL, A WOODEN PEAR, AND A PEBBLE, RESPECTIVELY.
EACH RECONSTRUCTED PATCH IS PRESENTED IN TWO VIEWS: OUTSIDE-IN AND INSIDE-OUT

outside-in view of patch
(black point clouds)

shape

inside-out view of patch

TABLE II
EUCLIDEAN DISTANCES (MILLIMETERS) FROM THE TACTILE DATA POINTS AND THE VERIFYING MESH VERTICES
TO THE PATCHES (LABELED TAGC) SHOWN IN TABLE I AND THOSE RECONSTRUCTED
BY MINIMIZING THE QUADRATIC VARIATION (QV)

tactile data points mesh vertices in patch area|| size ratio of || total mesh

shape dist. to patch (mm) dist. to patch (mm) [|tactile data to||vertices on

num. | TAGC QV num. | TAGC QV testing data || the model
shell 97 10.2782| 0.2420 |{5248|0.2283 0.2391 1.85% 19181
pear 63 [0.0613] 0.0664 |[1779(0.0991 0.0946 3.54% 84656
dark pebble|| 81 [0.0998| 0.1065 [[44230.1308 0.1327 1.83% 16028

With the data curves registered, the mesh vertices that project onto
the patch domain® are considered “overlapped” with the patch. The
minimum Euclidean distances from these overlapped vertices to the
patch are averaged. The patch in Fig. 4 is matched against a mesh model
of the bottle neck region. The overlapped vertices on the mesh model
are at an average Euclidean distance of 0.130 mm from the patch. The
actual distance is within 0.257 mm if we take into account the 0.127
mm accuracy of the scanner.

Table I displays patch reconstruction results over three more shapes.
10 The first column in the table lists the three objects with reference
points marked for tracking. The second and third columns present two
views (from the outside and the inside, respectively) of each recon-
structed patch (rendered as black point clouds) overlaid onto the cor-
responding mesh model.!! The data curves are shown in red, while the
Darboux frame in brown. In each view, only the points in the patch that
are not occluded by the mesh model are displayed. Namely, the patch is

approximated by the region inside a closed cubic spline through the projec-
tions of the endpoints of the three data curves onto the tangent plane.

100n average, tracking took 5 to 10 min while fitting took 10 min.
UFor display purpose, the mesh models are not shown in their entirety.

the union of the black points from the two views. The color of a vertex
on the mesh model is rendered in the RGB space based on the x-, y-,
and z-coordinates of its unit outward normal.

Table II compares the three reconstructed patches based on the total
absolute Gaussian curvature (TAGC), respectively, with those recon-
structed by minimizing the quadratic variation (QV)

// 22,4222, 422, dady
D

subject to the data constraint f(a) = 0. The above form originates
from the strain energy of a (flat) plate with unit Poisson’s ratio under
small deformations [49, p. 47]. In [22], it is shown to be the optimal
functional for surface fitting over sparse data under several conditions
including rotational symmetry.

The table lists, for each reconstructed patch, its average (absolute)
distances from the tactile data curves and from the overlapped mesh
vertices, respectively. The TAGC patches have slightly smaller errors
than the QV patches in four out of six comparisons, especially, when the
patches are more curved. For each method, the average errors over the
tactile data and the mesh vertices differ by hundredths of millimeters
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only, despite that the number of data points used in the patch recon-
struction is at most 3.54% of that of mesh vertices used in verification.
Even if we take into account the 0.127 mm accuracy of the scanner,
this error difference is still within 0.18 mm for each patch.

VI. DISCUSSION

This paper investigates how to reconstruct patches on curved ob-
jects from tactile data curves generated by robot finger tracking. Such
a situation arises in a task that involves close interactions between a
robot hand and an object, and where a camera or range sensor be-
comes ineffective due to occlusions. Potential applications are tasks
from grasping and dexterous manipulation of objects with unknown
geometry to robot-assisted surgery to robot climbing.

Another objective of our work is to understand the minimum amount
of tactile data sufficient for approximating a surface, or at least a patch.
We intend to use only “1-D” tactile data for patch reconstruction. Ex-
isting reconstruction algorithms require data points, whether range or
tactile, dense or sparse, to be 2-D arrays or “clouds.” The minimization
of Gaussian curvature while fitting can be viewed as a regularization
technique [40] for solving the ill-posed problem of surface reconstruc-
tion. Superquadric or B-spline surfaces such as NURBS are powerful
representations. However, these techniques are not expected to work
well on “1-D” data, as implied by Fig. 3(b).

Several factors affect the size of the reconstructed patch: curvatures
in the reconstructed region and the limit by the fitting form (1). A higher
degree polynomial is expected to describe a high-curvature surface re-
gion better, and in general, a larger one as well. More robust tracking
control is needed to maintain data accuracy, The data curves sampled
from the surface do not need to be planar. Even though the objects in our
experiment are immobilized, the reconstruction method can be incor-
porated into dexterous manipulation, especially under rolling contact
[4], [13], which allow the mapping of tactile data acquired at different
time instants into the same frame.

Probing the surface at a grid of points could possibly lead to a more
robust fitting result or a larger patch area than tracking along three
concurrent curves. However, multiple mechanical probes are time con-
suming because the robot hand needs to move up and down repeatedly.
Curve tracking is much more efficient, and it mimics the human fingers
moving across a surface to feel its shape.

A coordinate-measuring machine (CMM) can achieve an accuracy
of tenths of a micron. However, it is almost impossible to integrate its
colossal closed-frame structure with a robot hand.

A complicated surface can be represented as a graph, where every
node corresponds to one local patch on the surface and every edge cor-
responds to the boundary curve between two adjacent patches. Each
patch is described in its local frame that best reflects its geometry. Fit-
ting will be subject to constraints such as smoothness, tangential con-
tinuity, and concentricity [7], [44]. Automated selection of reference
points need to be implemented to partition the surface into patches that
reflect its topology. A better approach of obtaining global geometry,
perhaps, is to combine tracking-based reconstruction with a technique
based on vision [1] or range sensing.

ACKNOWLEDGMENT

The authors thank L. Mi for the use of his fast 2-D contour tracking
method. They also thank O. Khatib for his feedback on hybrid control.
This work extends the results of the conference paper [27]. They would
like to acknowledge the anonymous reviews of this and an early sub-
mission (to a different journal) which helped strengthen the technical
presentation.

REFERENCES

[1] P.K. Allen, “Integrating vision and touch for object recognition tasks,”
Int. J. Robot. Res., vol. 7, pp. 15-33, Aug. 1988.

[2] P. K. Allen and P. Michelman, “Acquisition and interpretation of
3-D sensor data from touch,” IEEE Trans. Robot. Autom., vol. 6, pp.
397404, Aug. 1990.

[3] J. Baeten and J. De Schutter, “Hybrid vision/force control at corners
in planar robotic-contour following,” IEEE/ASME Trans. Mechatron.,
vol. 7, pp. 143-151, Apr. 2002.

[4] A. Bicchi, A. Marigo, and D. Prattichizzo, “Dexterity through rolling:
Manipulation of unknown objects,” in Proc. IEEE Int. Conf. Robot.
Autom., 1999, pp. 1583-1588.

[5] M. M. Blane, Z. Lei, H. Civi, and D. B. Cooper, “The 3 L algorithm for
fitting implicit polynomial curves and surfaces to data,” IEEE Trans.
Pattern Anal. Mach. Intell., vol. 22, pp. 298-313, Mar. 2000.

[6] J.-D. Boissonnat, “Geometric structure for three-dimensional shape
representation,” ACM Trans. Graphics, vol. 3, pp. 266-286, Oct.
1984.

[7]1 R. M. Bolle and B. C. Vemuri, “On three-dimensional surface recon-
struction methods,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 13,
pp. 1-13, Jan. 1991.

[8] M. Buchin and J. Giesen, “Minimizing the total absolute Gaussian cur-
vature in a terrain is hard,” in Proc. Can. Conf. Comp. Geometry, 2005,
pp. 192-195.

[9] M. Charlebois, K. Gupta, and S. Payandeh, “Shape description of
curved surfaces from contact sensing using surface normals,” Int. J.
Robot. Res., vol. 18, pp. 779-787, Aug. 1999.

[10] N. Chen, R. Rink, and H. Zhang, “Local object shape from tac-
tile sensing,” in Proc. IEEE Int. Conf. Robot. Autom., 1996, pp.
3496-3501.

[11] X. Chen and F. Schmitt, “Intrinsic surface properties from surface tri-
angulation,” in Proc. Eur. Conf. Comp. Vision, 1992, pp. 739-743.

[12] K. K. Choi, S. L. Jiang, and Z. Li, “Multifingered robotic hands: Con-
tact experiments using tactile sensors,” in Proc. IEEE Int. Conf. Robot.
Autom., 1998, pp. 2268-2273.

[13] A. A. Cole, J. E. Hauser, and S. S. Sastry, “Kinematics and control of
multifingered hands with rolling contact,” IEEE Trans. Autom. Contr.,
vol. 34, pp. 298-404, Apr. 1989.

[14] S. Demey, H. Bruyninckx, and J. De Schutter, “Model-based planar
contour following in the presence of pose and model errors,” Int. J.
Robot. Res., vol. 16, pp. 840-858, Dec. 1997.

[15] J. De Schutter and H. Van Brussel, “Compliant robot motion I and II,”
Int. J. Robot. Res., vol. 7, pp. 3-33, Aug. 1988.

[16] G. Dudek and J. K. Tsotsos, “Recognizing planar curves using curva-
ture-tuned smoothing,” in Proc. IEEE Int. Conf. Pattern Recogn., 1990,
pp. 130-135.

[17] R. E. Ellis and M. Qin, “Singular-value and finite-element analysis of
tactile shape recognition,” in Proc. IEEE Int. Conf. Robotics Automa-
tion, 1994, pp. 2529-2535.

[18] R.S. Fearing, S. T. Venkataraman and T. Iberall, Eds., “Tactile sensing
for shape interpretation,” Dextrous Robot Hands, pp. 209-238, 1990.

[19] R. S. Fearing and T. O. Binford, “Using a cylindrical tactile sensor
for determining curvature,” in Proc. IEEE Int. Conf. Robot., 1988, pp.
765-771.

[20] F.P. Ferrie, J. Lagarde, and P. Whaite, “Darboux frames, snakes, and
super-quadrics: Geometry from the bottom up,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 15, pp. 771-784, Aug. 1993.

[21] P.J. Flynn and A. K. Jain, “On reliable curvature estimation,” in Proc.
IEEE Conf. Computer Vision Pattern Recog., 1989, pp. 110-116.

[22] W.E.L. Grimson, “A computational theory of visual surface interpola-
tion,” Philosoph. Trans. R. Soc. London B, vol. 298, pp. 395-427, Sep.
1982.

[23] E. Hameiri and I. Shimshoni, “Estimating the principal curvatures and
the Darboux frame from real 3-D range data,” IEEE Trans. Syst. Man.
Cybern., vol. 33, pt. B, pp. 626-637, Aug. 2003.

[24] R.D. Howe and M. R. Cutkosky, “Dynamic tactile sensing: Perception
of fine surface features with stress rate sensing,” IEEE Trans. Robot.
Automat., vol. 9, pp. 140-151, Apr. 1993.

[25] R.Ibrayev and Y.-B. Jia, “Semi-differential invariants for tactile recog-
nition of algebraic curves,” Int. J. Robot. Res., vol. 24, pp. 951-969,
Nov. 2005.

[26] F. Jatta, G. Legnani, and A. Visioli, “Hybrid force/velocity control of
industrial manipulators with elastic transmissions,” in Proc. IEEE/RSJ
Int. Conf. Intell. Robots. Syst., 2003, pp. 3276-3281.

[27] Y.-B. Jia, L. Mi, and J. Tian, “Surface patch reconstruction via curve
sampling,” in Proc. IEEE Int. Conf. Robot., 2006, pp. 1371-1377.



IEEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING, VOL. 7, NO. 2, APRIL 2010

(28]

[29]

(30]

[31]
(32]
[33]
[34]

(35]

[36]

(371

[38]

[39]
[40]
[41]
[42]
[43]
[44]

[45

[46]

[47]

[48]

[49]

[50]

[51]

D. Keren, D. Cooper, and J. Subrahmonia, “Describing complicated
objects by implicit polynomials,” IEEE Trans. Pattern Anal. Mach. In-
tell., vol. 16, pp. 38-53, Jan. 1994.

D. Keren and C. Gotsman, “Fitting curves and surfaces with con-
strained implicit polynomials,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 21, pp. 31-41, Jan. 1999.

D. Keren, E. Rivlin, and I. Shimshoni, “Recognizing 3D objects using
tactile sensing and curve invariants,” J. Math. Imag. Vis., vol. 12, pp.
5-23, Jan. 2000.

0. Khatib and J. Burdick, “Motion and force control of robot manipu-
lators,” in Proc. IEEE Int. Conf. Robot., 1986, pp. 1381-1386.

F. Lange and G. Hirzinger, “Learning force control with position con-
trolled robots,” in Proc. IEEE Int. Conf. Robot., 1996, pp. 2282-2288.
C.Linand M. J. Perry, “Shape description using surface triangulation,”
in Proc. IEEE Workshop Comp. Vision, 1982, pp. 38—43.

D. Meyers and S. Skinner, “Surfaces from contours,” ACM Trans.
Graph., vol. 11, pp. 228-258, Jul. 1992.

L. Mi and Y.-B. Jia, “High precision contour tracking with a joystick
sensor,” in Proc. IEEE/RSJ Int. Conf. Intell. Robot. Syst., 2004, pp.
804-809.

M. Moll and M. A. Erdmann, , J.-D. Boissonnat, J. Burdick, K. Gold-
berg, and S. Hutchinson, Eds., “Reconstructing the shape and motion
of unknown objects with active tactile sensors,” in Algorithmic Foun-
dations of Robotics V. Berlin, Germany: Springer-Verlag, 2004, pp.
293-3009.

D. J. Montana, “The kinematics of contact and grasp,” Int. J. Robot.
Res., vol. 7, pp. 17-32, Jun. 1988.

A. M. Okamura, N. Smaby, and M. R. Cutkosky, “An overview of
dexterous manipulation,” in Proc. IEEE Int. Conf. Robotics, 2000, pp.
255-262.

B. O’Neill, Elementary Differential Geometry.
demic, 1966.

T. Poggio, V. Torre, and C. Koch, “Computational vision and regular-
ization theory,” Nature, vol. 317, pp. 314-319, 1985.

A. Pressley, Elementary Differential Geometry. Berlin, Germany:
Springer-Verlag, 2001.

M. H. Raibert and J. J. Craig, “Hybrid position/force control of manip-
ulators,” J. Dyn. Syst. Meas. Contr., vol. 102, pp. 126-133, 1981.

R. A. Russell and S. Parkinson, “Sensing surface shape by touch,” in
Proc. IEEE Int. Conf. Robot., 1993, pp. 423-428.

B. Sarkar and C.-H. Mengq, “Smooth-surface approximation and reverse
engineering,” Comput.-Aided Des., vol. 23, pp. 623-628, Nov. 1991.
E. M. Stokely and S. Y. Wu, “Surface parameterization and curvature
measurement of arbitrary 3-D objects: Five practical methods,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 14, pp. 833-840, Aug. 1992.
S. Sullivan, L. Sandford, and J. Ponce, “Using geometric distance fits
for 3-D object modeling and recognition,” IEEE Trans. Pattern Anal.
Mach. Intell., vol. 16, pp. 1183-1196, Dec. 1994.

G. Taubin, “Estimating the tensor of curvature of a surface from a poly-
hedral approximation,” in Proc. IEEE Int. Conf. Comp. Vision, 1995,
pp. 902-907.

G. Taubin, F. Cukierman, S. Sullivan, J. Ponce, and D. J. Kriegman,
“Parameterized families of polynomials for bounded algebraic curve
and surface fitting,” IEEE Trans. Pattern Anal. Mach. Intell., vol. 16,
pp- 287-303, Mar. 1994.

S. P. Timoshenko and S. Woinowsky-Krieger, Theory of Plates and
Shells, 2nd ed. New York: McGraw-Hill, 1959.

R. van Damme and L. Alboul, , M. Dzhlen, T. Lyche, and L. L.
Schumaker, Eds., “Tight triangulations,” in Mathematical Methods for
Curves and Surfaces. Nashville, TN: Vanderbilt Univ. Press, 1995,
pp- 517-526.

D. Xiao, B. K. Ghosh, N. Xi, and T. J. Tarn, “Sensor-based hybrid
position/force control of a robot manipulator in an uncalibrated envi-
ronment,” IEEE Trans. Contr. Syst. Technol., vol. 8, pp. 635-645, Jul.
2000.

New York: Aca-

407

Orchestration of Grid-Enabled Geospatial Web
Services in Geoscientific Workflows
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Abstract—The need for computational resources capable of processing
geospatial data has accelerated the uptake of geospatial web services. Sev-
eral academic and commercial organizations now offer geospatial web ser-
vices for data provision, coordinate transformation, geocoding and sev-
eral other tasks. These web services adopt specifications developed by the
Open Geospatial Consortium (OGC)—the leading standardization body
for Geographic Information Systems. In parallel with efforts of the OGC,
the Grid computing community has published specifications for developing
Grid applications. The Open Grid Forum (OGF) is the main body that pro-
motes interoperability between Grid computing systems. This study exam-
ines the integration of Grid services and geospatial web services into work-
flows for Geoscientific processing. An architecture is proposed that bridges
web services based on the abstract geospatial architecture (ISO19119) and
the Open Grid Services Architecture (OGSA). The paper presents a work-
flow management system, called SAW-GEOQ, that supports orchestration of
Grid-enabled geospatial web services. An implementation of SAW-GEO is
presented, based on both the Simple Conceptual Unified Flow Language
(SCUFL) and the Business Process Execution Language for Web Services
(WS-BPEL or BPEL for short).

Note to Practitioners—Geoscientific workflows are used in several disci-
plines including for example geology, geophysics hydrology, and petroleum
science. Some of the analysis carried out by geoscientists can now be of-
fered on the World Wide Web using standardized web services. Our study
examines the potential of workflow enactors to support the creation of geo-
scientific workflows involving web services based on standards of the Open
Geospatial Consortium. An implementation of a prototype is presented and
applied to the analysis of groundwater vulnerability using borehole data. A
sample workflow is implemented using two different workflow enactors and
their distinct languages to demonstrate that the proposed approach is in-
dependent of the workflow enactor adopted. The proposed approach could
be used to support collaborative workflows that involve analytical services
provided by multiple organizations

Index Terms—Automation, geographic information systems, geology,
geophysics.

I. INTRODUCTION

Geoscientists use Geographic Information Systems (GIS) in almost
all their data management, processing, and analytical activities. The
development of standards for geospatial interoperability between
GIS is spearheaded by the Open Geospatial Consortium (OGC)—a
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